Introduction to Crystallography

A crystal is formed by the periodic repetition of a group of atoms in all directions. That group of atoms is called the basis.

 

Lattice

The infinite array of mathematical points, which describes how the basis is repeated, forms a periodic spatial arrangement is called the lattice.

 

Different choices for vectors spanning the lattice

 

 

Primitive Cells vs. Unit Cells

Primitive Cell

Of the vectors satisfying Eq. (1), those that form a parallelepiped with the smallest volume, are called primitive translation vectors, and the parallelepiped they form is known as the primitive cell.

 

Unit Cell

To better demonstrate the symmetry of the entire lattice, sometimes non-primitive translation vectors are used to specify the lattice. In this case, the parallelepiped is called the unit cell.

Primitive cell is shown in gray

Unit cell of a face-centered cubic structure

Primitive unit cell of a face-centered cubic structure. As drawn, the primitive translation vectors are \[\mathbf{a}_1=\frac{a}{2}(\hat{\mathbf{x}}+\hat{\mathbf{y}})\quad \mathbf{a}_2=\frac{a}{2}(\hat{\mathbf{y}}+\hat{\mathbf{z}})\quad \mathbf{a}_3=\frac{a}{2}(\hat{\mathbf{x}}+\hat{\mathbf{z}})\]

Lattice Parameters and Packing Fraction

Lattice Parameters

Lattice Parameters

The lengths of axes of the unit cell (called lattice constants \(a\), \(b\), and \(c\)) and the angles between the axes (\(\alpha\), \(\beta\) and \(\gamma\)) specify the unit cell. The lattice constants and the three angles between them are termed lattice parameters. See the following figure.

 

Packing Fraction

 

Bravais Lattices

 

Five Bravais Lattices in Two Dimensions

ObliqueRectangularCenterd Rectangular
 
SquareHexgonal (Rhombic) 

 

 

Seven Crystal Systems

 

Isometric (or Cubic)

$a=b=c$

$\alpha=\beta=\gamma=90^\circ$

Tetragonal

$a=b\ne c$

$\alpha = \beta = \gamma = 90^\circ$

Orthorhombic

$a\ne b\ne c$

$\alpha = \beta = \gamma = 90^\circ$

Hexagonal

$a=b\ne c$

$\alpha = \beta = 90^\circ, \gamma = 120^\circ$

 

Triclinic

$a\ne b\ne c$

$\alpha \ne \beta \ne \gamma$

Monoclinic

$a\ne b\ne c$

$\alpha = \beta = 90^\circ \ne \gamma$

Rhombohedral (or Trigonal)

$a=b=c$

$\alpha = \beta = \gamma < 120^\circ, \ne 90^\circ$

 

Cubic Lattices

PrimitiveBody-CenteredFace-Centered

 

Simple Cubic (SC) Crystal

 

Body-Centered Cubic (BCC) Crystal

The primitive translation vectors are: \[\mathbf{a}_1=\frac{a}{2}(\hat{\mathbf{x}}+\hat{\mathbf{y}}-\hat{\mathbf{z}})\] \[\mathbf{a}_2=\frac{a}{2}(-\hat{\mathbf{x}}+\hat{\mathbf{y}}+\hat{\mathbf{z}})\] \[\mathbf{a}_3=\frac{a}{2}(\hat{\mathbf{x}}-\hat{\mathbf{y}}+\hat{\mathbf{z}})\]

Some Elements with BCC structure

BariumBaChromiumCr
CesiumCs\(\alpha-\)Iron\(\alpha-\)Fe
PotassiumKLithiumLi
MolybdenumMoSodiumNa
NiobiumNbRubidiumRb
TantalumTaTitaniumTi
VanadiumVTungstenW

 

Face-Centered Cubic (FCC) Crystal

 

 

The primitive cell vs the unit cell 

The primitive translation vectors are: \[\mathbf{a}_1=\frac{a}{2}(\hat{\mathbf{x}}+\hat{\mathbf{y}})\] \[\mathbf{a}_2=\frac{a}{2}(\hat{\mathbf{y}}+\hat{\mathbf{z}})\] \[\mathbf{a}_3=\frac{a}{2}(\hat{\mathbf{x}}+\hat{\mathbf{z}})\]

 

The reference atom is red.  Blue, green, and orange points are the 12 nearest neighbors of the reference atoms, and the purple points are its 6 next nearest neighbors atoms.

 

Characteristics of Cubic structure

 simple cubicb.c.c.f.c.c.
volume of conventional cell\(a^3\)\(a^3\)\(a^3\)
no. of lattice points per cell124
no. of nearest neighbors
(coordination number)
6812
no. of 2nd nearest neighbors1266
nearest neighbor distance\(a\)\(\frac{\sqrt{3}}{2}a\approx 0.866 a\)\(\frac{a}{\sqrt{2}}\approx 0.707a\)
2nd nearest neighbor distance\(a\sqrt{2}\)\(a\)\(a\)
packing fraction\(\pi/6\approx 0.52\)\(\pi\sqrt{3}/8\approx 0.68\)\(\pi\sqrt{2}/6\approx 0.74\)

[111], [101], and [110] describe directions \(m\), \(t\), and \(n\), respectively.

 

Crystal Structure May Change with Temperature

From Wikipedia

 

Hexagonal Close-Packed (HCP) Structure

 

 

\[\mathbf{a}_1=a\hat{\mathbf{x}},\ \mathbf{a}_2=\frac{a}{2}\hat{\mathbf{x}}+\frac{a\sqrt{3}}{2}\hat{\mathbf{y}},\quad \mathbf{a}_3=c\,\hat{\mathbf{z}}\]

 

Comparing Close-Packed Structures

 

The left is the hcp structure, and the right is the fcc structure.
hcpfcc

 

 

 

Elements with hcp structures

Element\large c/aElement\large c/a
Ideal1.63  
Be1.56Cd1.89
Ce1.63\(\alpha\)-Co1.62
Dy1.57Er1.57
Gd1.59He (2K)1.63
Hf1.58Ho1.57
La1.62Lu1.59
Mg1.62Nd1.61
Os1.58Pr1.61
Re1.62Ru1.59
Tb1.58Ti1.59
Tl1.60Tm1.57
Y1.57Zn1.59

[adapted from Ashcroft, Mermin, Solid State Physics]

 

Diamond Crystal

 

(a) Tetrahedral bond in a diamond structure(b) Diamond structure projected on a cube face. Fractions denote the height above the base in units of \(a\)

 

3D Diamond Structure

 

Sodium Chloride Structure

NaCl structure, Blue atoms represent Na atoms and Green ones represent Cl atoms. 
 

Some compounds with sodium chloride structure

LiFLiClLiBrLiI  
NaFNaClNaBrNaI  
RbFRbClRbBrRbI  
CsF     
AgFAgClAgBr   
MgOMgSMgSe   
CaOCaSCaSeCaTe  
SrOSrSSrSeSrTe  
BaOBaSBaSeBaTe  

[Adapted from Ashcroft, Mermin, Solid State Physics]

 

Cesium Chloride Structure

 

CsCl structure. Blue spheres represent Cl atoms and the big red sphere represents the Cs atom which is much larger than the Cl atoms.
 

CsClCsBrCsI
TlClTlBrTlI

 

Miller Indices

Miller Indices for Directions in Cubic Structure

[111], [101], and [110] describe directions \(m\), \(t\), and \(n\), respectively.

 

Miller Indices for Planes in Cubic Structure

$(100)$$(110)$$(111)$

 

Miller Indices for hcp

Determination of indices for a digonal axis if Type I - $[2\overline{11}0]$Determination of indices for a digonal axis if Type II - $[10\overline{1}0]$

 

Further Reading