Recall that \[ \boldsymbol{\epsilon}=\frac{1}{2}\left(\mathbf{u}\nabla+(\mathbf{u}\nabla)^T\right). \] or \[ \boldsymbol{\epsilon}=\frac{1}{2}\left(\begin{bmatrix} u_{1}\\ u_{2}\\ u_{3} \end{bmatrix}\begin{bmatrix} \dfrac{\partial}{\partial x_{1}} & \dfrac{\partial}{\partial x_{2}} & \dfrac{\partial}{\partial x_{3}} \end{bmatrix}+\begin{bmatrix} \dfrac{\partial}{\partial x_{1}} \\ \dfrac{\partial}{\partial x_{2}} \\ \dfrac{\partial}{\partial x_{3}} \end{bmatrix}\begin{bmatrix} u_{1}& u_{2}& u_{3} \end{bmatrix}\right) \]

To express the components of strain in a new coordinate system, we must express both the displacement \(\mathbf{u}\) and \(\nabla\) in the new coordinate system. That is, \[ \epsilon_{i'j'}=\frac{1}{2}\left(\frac{\partial u_{i'}}{\partial x_{j'}}+\frac{\partial u_{j'}}{\partial x_{i'}}\right). \]

Therefore, to express \(\epsilon_{i'j'}\) in terms of the components of strain in the old coordinate system, we should:

Transformation of Displacement

The displacement is a vector quantity. Therefore, its components in a new coordinate system \(u_{1'}, u_{2'}, u_{3'}\) follow the transformation of vectors: \[ u_{i'}=\sum_{k=1}^3 u_k l_{ki'} \tag{1} \] or \[ \mathbf{u}'=\mathbf{u} L \tag{2} \] \[ \begin{bmatrix} u_{1'} & u_{2'} & u_{3'} \end{bmatrix}=\begin{bmatrix} u_{1} & u_{2} & u_{3} \end{bmatrix}\begin{bmatrix} l_{11'} & l_{12'} & l_{13'}\\ l_{21'} &l_{22'} & l_{23'}\\ l_{31'} & l_{32'} & l_{33'} \end{bmatrix} \]

where \(l_{ki'}=\hat{\mathbf{e}}_k\cdot \hat{\mathbf{e}}_{i'}\) is the kth component of the ith unit vector for the new coordinate system:

\[ \begin{bmatrix} l_{11'} & l_{12'} & l_{13'}\\ l_{21'} &l_{22'} & l_{23'}\\ l_{31'} & l_{32'} & l_{33'} \end{bmatrix}=\begin{bmatrix} | & | & |\\ \hat{\mathbf{e}}_1^\prime & \hat{\mathbf{e}}_2^\prime & \hat{\mathbf{e}}_3^\prime\\ | & | & | \end{bmatrix} \tag{3} \]

Transformation of Derivatives

It follows from the chain rule that \[ \frac{\partial}{\partial x_{1'}}=\left(\frac{\partial}{\partial x_{1}}\right)\frac{\partial x_1}{\partial x_{1'}}+\left(\frac{\partial}{\partial x_{2}}\right)\frac{\partial x_2}{\partial x_{1'}}+\left(\frac{\partial}{\partial x_{3}}\right) \frac{\partial x_3}{\partial x_{1'}}. \tag{4} \]

The rate of change of an old coordinate with respect to a new coordinate is the cosine of the angle between them: \[ \frac{\partial x_1}{\partial x_{1'}}=l_{11'},\quad \frac{\partial x_2}{\partial x_{1'}}=l_{21'},\quad \frac{\partial x_3}{\partial x_{1'}}=l_{31'}. \tag{5} \]

Therefore, \[ \frac{\partial}{\partial x_{1'}}=\left(\frac{\partial}{\partial x_{1}}\right)l_{11'}+\left(\frac{\partial}{\partial x_{2}}\right)l_{21'}+\left(\frac{\partial}{\partial x_{3}}\right) l_{31'}. \tag{6} \]

We can write (6) as \[ \left[\frac{\partial}{\partial x_{1'}}\right]=\begin{bmatrix} \dfrac{\partial}{\partial x_{1}} & \dfrac{\partial}{\partial x_{2}} & \dfrac{\partial}{\partial x_{3}} \end{bmatrix} \begin{bmatrix} l_{11'}\\ l_{21'}\\ l_{31'} \end{bmatrix} \]

and for all new coordinates: \[ \begin{bmatrix} \dfrac{\partial}{\partial x_{1'}} & \dfrac{\partial}{\partial x_{2'}} & \dfrac{\partial}{\partial x_{3'}} \end{bmatrix}=\begin{bmatrix} \dfrac{\partial}{\partial x_{1}} & \dfrac{\partial}{\partial x_{2}} & \dfrac{\partial}{\partial x_{3}} \end{bmatrix} \begin{bmatrix} l_{11'} & l_{12'} & l_{13'}\\ l_{21'} &l_{22'} & l_{23'}\\ l_{31'} & l_{32'} & l_{33'} \end{bmatrix}\tag{7} \]

Gradient in New Coordinates

Combining (1) and (6), we get \[ \begin{aligned} \frac{\partial u_{i'}}{\partial x_{j'}}&=\frac{\partial}{\partial x_{j'}}\overbrace{\sum_{k=1}^3 u_k l_{ki'}}^{u_{i'}}\\ &=\sum_{p=1}^3 \frac{\partial}{\partial x_p}l_{pj'}\sum_{k=1}^3 u_k l_{ki'}\\ &=\sum_{p=1}^3 \sum_{k=1}^3 l_{pj'} \frac{\partial u_k}{\partial x_p} l_{ki'} \end{aligned}\tag{8} \] Alternatively, using matrix notation and (2) and (7), we can write \[ \begin{aligned} \mathbf{u}'\nabla' &=\begin{bmatrix} u_{1'}\\ u_{2'}\\ u_{3'} \end{bmatrix}\begin{bmatrix} \dfrac{\partial}{\partial x_{1'}} & \dfrac{\partial}{\partial x_{2'}} & \dfrac{\partial}{\partial x_{3'}} \end{bmatrix}\\ &=L^T \begin{bmatrix} u_{1}\\ u_{2}\\ u_{3} \end{bmatrix}\begin{bmatrix} \dfrac{\partial}{\partial x_{1}} & \dfrac{\partial}{\partial x_{2}} & \dfrac{\partial}{\partial x_{3}} \end{bmatrix} L\\ &=L^T (\mathbf{u}\nabla) L \end{aligned}\tag{9} \]

Transformation Law for Strain Tensor

Since \[ \boldsymbol{\epsilon}=\frac{1}{2}\left(\mathbf{u}\nabla+(\mathbf{u}\nabla)^T\right), \] we conclude that \[ \bbox[5px,border:1px #f2f2f2;background-color:#f2f2f2]{\boldsymbol{\epsilon}^\prime=L^T \boldsymbol{\epsilon}\, L}\tag{10} \] This is the same transformation formula as for stress: \[ \boldsymbol{\sigma}^\prime = L^T \boldsymbol{\sigma} L \]

Special Case: 2D Transformation

In 2D, \[ L=\begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \]

Therefore, \[ \begin{bmatrix} \epsilon_{x'} & \epsilon_{x'y'}\\ \epsilon_{y'x'} & \epsilon_{y'} \end{bmatrix}=\begin{bmatrix} \cos \theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix}\begin{bmatrix} \epsilon_{x} & \epsilon_{xy}\\ \epsilon_{yx} & \epsilon_{y} \end{bmatrix}\begin{bmatrix} \cos \theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}\tag{11} \]

\[ \bbox[5px,border:1px #f2f2f2;background-color:#f2f2f2]{\begin{aligned} \epsilon_{x^\prime}&=\frac{\epsilon_x+\epsilon_y}{2}+\frac{\epsilon_x-\epsilon_y}{2} \cos 2 \theta+\epsilon_{x y} \sin 2 \theta,\\ \epsilon_{y^\prime} & =\frac{\epsilon_x+\epsilon_y}{2}-\frac{\epsilon_x-\epsilon_y}{2} \cos 2 \theta-\epsilon_{xy} \sin 2 \theta \\ \epsilon_{x' y^\prime} & =-\frac{\epsilon_x-\epsilon_y}{2} \sin 2 \theta+\epsilon_{xy} \cos 2 \theta \end{aligned}}\tag{12} \]

This shows that to transform the strain components in a 2D problem, we can use Mohr’s circle, exactly as with stress.

Example: The displacement field of a stressed body is specified by
\[ u = 10^{-3}(x+y)^2\text{ m}, \quad v = 10^{-3}(y-z)^2 \text{ m}, \quad w = -10^{-3}xz\text{ m} \]

  1. Find the strain tensor at the point \(P(0,1,-2)\).
  2. Calculate the change in the right angle between
    \[ \hat{\mathbf{a}} = \tfrac{1}{9}(8\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}}), \quad \hat{\mathbf{b}} = \tfrac{1}{9}(4\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 7\hat{\mathbf{k}}) \]
Solution

(a) The displacement gradient tensor is

\[ \begin{aligned} \left[ \frac{\partial u_i}{\partial x_j} \right] &= \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{bmatrix}\\ &= 10^{-3} \begin{bmatrix} 2(x+y) & 2(x+y) & 0 \\ 0 & 2(y-z) & -2(y-z) \\ -z & 0 & -x \end{bmatrix} \end{aligned} \]

Evaluating at \(P(0,1,-2)\):

\[ \nabla \mathbf{u} =10^{-3} \begin{bmatrix} 2 & 2 & 0 \\ 0 & 6 & -6 \\ 2 & 0 & 0 \end{bmatrix} \]

The strain tensor is given by \[ \boldsymbol{\varepsilon} = \tfrac{1}{2} \big( \nabla \mathbf{u} + (\nabla \mathbf{u})^T \big) \] \[ \boldsymbol{\varepsilon} = \frac{10^{-3}}{2} \left( \begin{bmatrix} 2 & 2 & 0 \\ 0 & 6 & -6 \\ 2 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 2 \\ 2 & 6 & 0 \\ 0 & -6 & 0 \end{bmatrix} \right) \]

\[ \boldsymbol{\varepsilon} = 10^{-3} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 6 & -3 \\ 1 & -3 & 0 \end{bmatrix} \]

(b) We consider \(\hat{\mathbf{e}}_{1'} = \hat{\mathbf{a}}\), \(\hat{\mathbf{e}}_{2'} = \hat{\mathbf{b}}\). Both are unit vectors.

The change in the angle is related to the engineering shear strain: \[ \gamma_{1'2'} = 2 \, \varepsilon_{1'2'} \]

To compute \(\boldsymbol{\epsilon}'\), we rotate \(\boldsymbol{\epsilon}\) into the basis \(\{\hat{\mathbf{e}}_{1'}, \hat{\mathbf{e}}_{2'}, \hat{\mathbf{e}}_{3'}\}\), where

\[ \hat{\mathbf{e}}_{3'} = \hat{\mathbf{e}}_{1'} \times \hat{\mathbf{e}}_{2'} = -\tfrac{1}{9}\hat{\mathbf{i}} + \tfrac{8}{9}\hat{\mathbf{j}} + \tfrac{4}{9}\hat{\mathbf{k}} \]

The transformation matrix is

\[ L = \begin{bmatrix} \hat{\mathbf{e}}_{1'} & \hat{\mathbf{e}}_{2'} & \hat{\mathbf{e}}_{3'} \end{bmatrix} = \begin{bmatrix} 8/9 & 4/9 & -1/9 \\ -1/9 & 4/9 & 8/9 \\ 4/9 & -7/9 & 4/9 \end{bmatrix} \]

The strain tensor in this rotated basis is

\[ \boldsymbol{\epsilon}' = L^T \, \boldsymbol{\epsilon} \, L \]

\[ \boldsymbol{\epsilon}' =10^{-3} \begin{bmatrix} 2.5432 & 0.9877 & -0.2469 \\ & 1.1852 & -0.29630 \\ \text{sym} & & 0.0741 \end{bmatrix} \]

Therefore,

\[ \Delta \theta = 2 \times 0.9877 \times 10^{-3}= 1.9753\times 10^{-3} \]