Table of Standard Forms
| \(\dfrac{dy}{dx}\) | \(\longleftarrow\quad y\quad\longrightarrow\) | \(\int y\, dx\) |
|---|---|---|
| \(1\) | \(x\) | \(\frac{1}{2} x^2 + C\) |
| \(0\) | \(a\) | \(ax + C\) |
| \(1\) | \(x \pm a\) | \(\frac{1}{2} x^2 \pm ax + C\) |
| \(a\) | \(ax\) | \(\frac{1}{2} ax^2 + C\) |
| \(2x\) | \(x^2\) | \(\frac{1}{3} x^3 + C\) |
| \(nx^{n-1}\) | \(x^n\) | \(\dfrac{1}{n+1} x^{n+1} + C\) |
| \(-x^{-2}\) | \(x^{-1}\) | \(\ln |x| + C\) |
| \(\dfrac{du}{dx} \pm \dfrac{dv}{dx} \pm \dfrac{dw}{dx}\) | \(u \pm v \pm w\) | \(\int u\, dx \pm \int v\, dx \pm \int w\, dx\) |
| \(u\, \dfrac{dv}{dx} + v\, \dfrac{du}{dx}\) | \(uv\) | No general form known |
| \(\dfrac{v\, \dfrac{du}{dx} - u\, \dfrac{dv}{dx}}{v^2}\) | \(\dfrac{u}{v}\) | No general form known |
| \(\dfrac{du}{dx}\) | \(u\) | \(ux - \int x\, du + C\) |
Exponential and Logarithmic:
| \(\dfrac{dy}{dx}\) | \(\longleftarrow\quad y\quad\longrightarrow\) | \(\int y\, dx\) |
|---|---|---|
| \(e^x\) | \(e^x\) | \(e^x + C\) |
| \(x^{-1}\) | \(\ln x\) | \(x(\ln x - 1) + C\) |
| \(\dfrac{1}{x\,\ln b}\) | \(\log_{b} x\) | \(\dfrac{1}{\ln b} x (\ln x - 1) + C\) |
| \(a^x \ln a\) | \(a^x\) | \(\dfrac{a^x}{\ln a} + C\) |
Trigonometrical:
| \(\dfrac{dy}{dx}\) | \(\longleftarrow\quad y\quad\longrightarrow\) | \(\int y\, dx\) |
|---|---|---|
| \(\cos x\) | \(\sin x\) | \(-\cos x + C\) |
| \(-\sin x\) | \(\cos x\) | \(\sin x + C\) |
| \(\sec^2 x\) | \(\tan x\) | \(-\ln|\cos x| + C\) |
| \(\sec x\ \tan x\) | \(\sec x\) | \(\ln|\sec x+\tan x| + C\) |
Inverse Trigonometrical:
| \(\dfrac{dy}{dx}\) | \(\longleftarrow\quad y\quad\longrightarrow\) | \(\int y\, dx\) |
|---|---|---|
| \(\dfrac{1}{\sqrt{1-x^2}}\) | \(\arcsin x=\sin^{-1} x\) | \(x \cdot \arcsin x + \sqrt{1 - x^2} + C\) |
| \(-\dfrac{1}{\sqrt{1-x^2}}\) | \(\arccos x=\cos^{-1} x\) | \(x \cdot \arccos x - \sqrt{1 - x^2} + C\) |
| \(\dfrac{1}{1+x^2}\) | \(\arctan x=\tan^{-1} x\) | \(x \cdot \arctan x - \frac{1}{2} \ln (1 + x^2) + C\) |
Hyperbolic:
| \(\dfrac{dy}{dx}\) | \(\longleftarrow\quad y\quad\longrightarrow\) | \(\int y\, dx\) |
|---|---|---|
| \(\cosh x\) | \(\sinh x\) | \(\cosh x + C\) |
| \(\sinh x\) | \(\cosh x\) | \(\sinh x + C\) |
| \(\text{sech}^2 x\) | \(\tanh x\) | \(\ln \cosh x + C\) |
| \(-\text{sech } x \tanh x\) | \(\text{sech }x\) | \(2\arctan\left(e^x\right)+C\) |
Inverse Hyperbolic:
| \(\dfrac{dy}{dx}\) | \(\longleftarrow\quad y\quad\longrightarrow\) | \(\int y\, dx\) |
|---|---|---|
| \(\dfrac{1}{\sqrt{x^2+1}}\) | \(\text{arcsinh } x=\sinh^{-1} x\) | \(-\sqrt{1 + x^2} + x \text{ arcsinh }x+C\) |
| \(\dfrac{1}{\sqrt{x^2-1}}\) | \(\text{arccosh } x=\cosh^{-1} x\) | \(-\sqrt{x^2-1}+x \text{ arccosh }x+C\) |
| \(\dfrac{1}{1-x^2}\) | \(\text{arctanh }x = \tanh^{-1} x\) | \(x \text{ arctanh } x + \dfrac{1}{2} \ln|1 - x^2|+C\) |
Miscellaneous:
| \(\dfrac{dy}{dx}\) | \(\longleftarrow\quad y\quad\longrightarrow\) | \(\int y\, dx\) |
|---|---|---|
| \(-\dfrac{1}{(x + a)^2}\) | \(\dfrac{1}{x + a}\) | \(\ln |x+a| + C\) |
| \(\dfrac{x}{\sqrt{x^2+a^2}}\) | \(\sqrt{a^2+x^2}\) | \(\dfrac{1}{2}x\sqrt{x^2+a^2}+\dfrac{a^2}{2}\ln\left(x+\sqrt{x^2+a^2}\right)+C\) |
| \(-\dfrac{x}{(a^2 + x^2)^{\frac{3}{2}}}\) | \(\dfrac{1}{\sqrt{a^2 + x^2}}\) | \(\ln (x + \sqrt{a^2 + x^2}) + C\) |
| \(\mp \dfrac{b}{(a \pm bx)^2}\) | \(\dfrac{1}{a \pm bx}\) | \(\pm \dfrac{1}{b} \ln |a \pm bx|+ C\) |
| \(-\dfrac{3a^2x}{(a^2 + x^2)^{\frac{5}{2}}}\) | \(\dfrac{a^2}{(a^2 + x^2)^{\frac{3}{2}}}\) | \(\dfrac{x}{\sqrt{a^2 + x^2}} + C\) |
| \(a \cdot \cos ax\) | \(\sin ax\) | \(-\dfrac{1}{a} \cos ax + C\) |
| \(-a \cdot \sin ax\) | \(\cos ax\) | \(\dfrac{1}{a} \sin ax + C\) |
| \(a \cdot \sec^2ax\) | \(\tan ax\) | \(-\dfrac{1}{a} \ln |\cos ax| + C\) |
| \(\sin 2x\) | \(\sin^2 x\) | \(\dfrac{x}{2} - \dfrac{\sin 2x}{4} + C\) |
| \(-\sin 2x\) | \(\cos^2 x\) | \(\dfrac{x}{2} + \dfrac{\sin 2x}{4} + C\) |
| \(n \cdot \sin^{n-1} x \cdot \cos x\) | \(\sin^n x\) | \(-\dfrac{\cos x}{n} \sin^{n-1} x + \dfrac{n-1}{n} \int \sin^{n-2} x\, dx\) |
| \(-\dfrac{\cos x}{\sin^2 x}\) | \(\dfrac{1}{\sin x}\) | \(\ln\left|\tan \dfrac{x}{2}\right| + C\) |
| \(-\dfrac{\sin 2x}{\sin^4 x}\) | \(\dfrac{1}{\sin^2 x}\) | \(-\cot x + C\) |
| \(\dfrac{\sin^2 x - \cos^2 x}{\sin^2 x \cdot \cos^2 x}\) | \(\dfrac{1}{\sin x \cdot \cos x}\) | \(\ln|\tan x| + C\) |
| \(n \cdot \sin mx \cdot \cos nx + m \cdot \sin nx \cdot \cos mx\) | \(\sin mx \cdot \sin nx\) | \(\frac{1}{2} \cos(m - n)x - \frac{1}{2} \cos(m + n)x + C\) |
| \(2a\cdot\sin 2ax\) | \(\sin^2 ax\) | \(\dfrac{x}{2} - \dfrac{\sin 2ax}{4a} + C\) |
| \(-2a\cdot\sin 2ax\) | \(\cos^2 ax\) | \(\dfrac{x}{2} + \dfrac{\sin 2ax}{4a} + C\) |