The binomials of the form \(\sqrt{A}+\sqrt{B}\) and \(\sqrt{A}-\sqrt{B}\) are called conjugates of each other. For example, \[\sqrt{2}+\sqrt{5}\qquad\text{and}\quad \sqrt{2}-\sqrt{5},\] or \[\sqrt{3x+5}+\sqrt{2x+7}\quad\text{and}\quad \sqrt{3x+5}-\sqrt{2x+7}\] are conjugates of each other. Because conjugates are the sum and difference of the same two terms, their product is the difference of the squares of these terms (see Section: Special Product Formulas ); that is, \[(\sqrt{A}-\sqrt{B})(\sqrt{A}+\sqrt{B})=(\sqrt{A})^{2}-(\sqrt{B})^{2}=A-B.\] 

Similarly

Example 1.45 . Remove the square roots in the denominator \[\frac{1}{\sqrt{x+3}+\sqrt{x-2}}\] 

 

Solution

We multiply top and bottom by \(\sqrt{x+3}-\sqrt{x-2},\) giving \[\begin{align} \frac{1}{\sqrt{x+3}+\sqrt{x-2}} & =\frac{1}{\sqrt{x+3}+\sqrt{x-2}}\cdot\frac{\sqrt{x+3}-\sqrt{x-2}}{\sqrt{x+3}-\sqrt{x-2}}\\ & =\frac{\sqrt{x+3}-\sqrt{x-2}}{(\sqrt{x+3})^{2}-(\sqrt{x-2})^{2}}\tag{\footnotesize Let $A=\sqrt{x+3}$ and $B=\sqrt{x-2}$ and then use $(A-B)(A+B)=A^{2}-B^{2}$}\\ & =\frac{\sqrt{x+3}-\sqrt{x-2}}{x+3-(x-2)}\\ & =\frac{1}{5}\left(\sqrt{x+3}-\sqrt{x-2}\right). \end{align}\] 

 

Example 1.46 . Rationalize the numerator of \(\dfrac{\sqrt{9+h}-3}{h}\) 

 

Solution

To rationalize the numerator, we multiply both the numerator and the denominator by the conjugate of the numerator, \(\sqrt{9+h} - 3\) , which is \(\sqrt{9+h} + 3\) :

 

\[\begin{align} \dfrac{\sqrt{9+h}-3}{h}&=\dfrac{\sqrt{9+h}-3}{h}\frac{\sqrt{9+h}+3}{\sqrt{9+h}+3}\\ &=\frac{(\sqrt{9+h})^2-3^2}{h(\sqrt{9+h}+3)}\\ &=\frac{9+h-9}{h(\sqrt{9+h}+3)}\\ &=\frac{h}{h(\sqrt{9+h}+3)}\\ &=\frac{1}{\sqrt{9+h}+3} \end{align}\]