In this section, we introduce the concept of intervals that are extensively used in calculus. The set of all real numbers that lie between two given numbers and may or may not include these end points is called an interval.

Closed interval \([a,b]\) is the set of real numbers \(x\) that satisfy the inequalities \(a\leq x\leq b\) . \[[a,b]=\{x\in\mathbb{{R}}|\ a\leq x\leq b\}.\] Open interval \((a,b)\) is the set of real numbers \(x\) that satisfy the inequalities \(a. \[(a,b)=\{x\in\mathbb{{R}}|\ aAnother notation for the open interval \((a,b)\) is \(]a,b[\) .

We also have half-open intervals that include only one endpoint. In addition to finite intervals, we have infinite intervals that extend indefinitely in one or both directions. If an interval extends indefinitely in the positive direction, we write \(\infty\) (or sometimes \(+\infty\) ) in place of the right end and if it extends indefinitely in the negative direction, we write \(-\infty\) in place of the left end. All of these cases are shown in the following table.

Notation Definition Graph Classification 
\(\left[a,b\right]\) \(\{x|\ a\leq x\leq b\}\) image finite, closed 
\(\left(a,b\right)\) \(\{x|\ aimage finite, open 
\([a,b)\) \(\{x|\ a\leq ximage finite, half-open 
\((a,b]\) \(\{x|\ aimage finite, half-open 
\([a,\infty)\) \(\{x|\ a\leq x<\infty\}\) image infinite, closed 
\((a,\infty)\) \(\{x|\ aimage infinite, open 
\((-\infty,b]\) \(\{x|\ -\inftyimage infinite, closed 
\((-\infty,b)\) \(\{x|\ -\inftyimage infinite, open 
\((-\infty,\infty)\) \(\{x|\ -\inftyimage infinite, open and closed 

Different ways to symbolically express the set shown above: \(\{x|\ x\neq3\}=(-\infty,3)\cup(3,\infty)=\mathbb{R}-\{3\}\) 

Example 1.7 . If \(I=[-3,2)\) and \(J=(1,4)\) then find \(I\cup J\) and \(I\cap J\)

 

Solution

The results are explained in the next two figures.

 

\([-3,2)\cup(1,4)=[-3,4)\) 
\([-3,2)\cap(1,4)=(1,2).\)